archives

From shift and reset to polarized linear logic

By now, shift/reset should be as popular as call/cc was ten years ago. Some think these control operators are even more important in practice than call/cc, and should be directly supported by PLs. I believe, this paper by Chung-chieh Shan will be interesting to many who loves logic and Curry-Howard isomorphism.

From shift and reset to polarized linear logic

Abstract:

Griffin pointed out that, just as the pure lambda-calculus corresponds to intuitionistic logic, a lambda-calculus with first-class continuations corresponds to classical logic. We study how first-class delimited continuations, in the form of Danvy and Filinski’s shift and reset operators, can also be logically interpreted. First, we refine Danvy and Filinski’s type system for shift and reset to distinguish between pure and impure functions. This refinement not only paves the way for answer type polymorphism, which makes more terms typable, but also helps us invert the continuation-passing-style (CPS) transform: any pure lambda-term with an appropriate type is beta-eta-equivalent to the CPS transform of some shift-reset expression. We conclude that the lambda-calculus with shift and reset and the pure lambda-calculus have the same logical interpretation, namely good old intuitionistic logic. Second, we mix delimited continuations with undelimited ones. Informed by the preceding conclusion, we translate the lambda-calculus with shift and reset into a polarized variant of linear logic that integrates classical and intuitionistic reasoning. Extending previous work on the lambda-µ-calculus, this unifying intermediate language expresses computations with and without control effects, on delimited and undelimited continuations, in call-by-value and call-byname settings.