archives

Joe Duffy: A (brief) retrospective on transactional memory

A (brief) retrospective on transactional memory, by Joe Duffy, January 3rd, 2010. Although this is a blog post, don't expect to read it all on your lunch break...

The STM.NET incubator project was canceled May 11, 2010, after beginning public life July 27, 2009 at DevLabs. In this blog post, written 4 months prior to its cancellation, Joe Duffy discusses the practical engineering challenges around implementing Software Transactional Memory in .NET. Note: He starts off with a disclaimer that he was not engaged in the STM.NET project past its initial working group phase.

In short, Joe argues, "Throughout, it became abundantly clear that TM, much like generics, was a systemic and platform-wide technology shift. It didn’t require type theory, but the road ahead sure wasn’t going to be easy." The whole blog post deals with how many implementation challenges platform-wide support for STM would be in .NET, including what options were considered. He does not mention Maurice Herlihy's SXM library approach, but refers to Tim Harris's work several times.

There was plenty here that surprised me, especially when you compare Concurrent Haskell's STM implementation to STM.NET design decisions and interesting debates the team had. In Concurrent Haskell, issues Joe raises, like making Console.WriteLine transactional, are delegated to the type system by the very nature of the TVar monad, preventing programmers from writing such wishywashy code. To be honest, this is why I didn't understand what Joe meant by "it didn't require type theory" gambit, since some of the design concerns are mediated in Concurrent Haskell via type theory. On the other hand, based on the pragmatics Joe discusses, and the platform-wide integration with the CLR they were shooting for, reminds me of The Transactional Memory / Garbage Collection Analogy. Joe also wrote a briefer follow-up post, More thoughts on transactional memory, where he talks more about Barbara Liskov's Argus.

Is Transactional Programming Actually Easier?

Is Transactional Programming Actually Easier?, WDDD '09, Christopher J. Rossbach, Owen S. Hofmann, and Emmett Witchel.

Chip multi-processors (CMPs) have become ubiquitous, while tools that ease concurrent programming have not. The promise of increased performance for all applications through ever more parallel hardware requires good tools for concurrent programming, especially for average programmers. Transactional memory (TM) has enjoyed recent interest as a tool that can help programmers program concurrently.

The TM research community claims that programming with transactional memory is easier than alternatives (like locks), but evidence is scant. In this paper, we describe a user-study in which 147 undergraduate students in an operating systems course implemented the same programs using coarse and fine-grain locks, monitors, and transactions. We surveyed the students after the assignment, and examined their code to determine the types and frequency of programming errors for each synchronization technique. Inexperienced programmers found baroque syntax a barrier to entry for transactional programming. On average, subjective evaluation showed that students found transactions harder to use than coarse-grain locks, but slightly easier to use than fine-grained locks. Detailed examination of synchronization errors in the students’ code tells a rather different story. Overwhelmingly, the number and types of programming errors the students made was much lower for transactions than for locks. On a similar programming problem, over 70% of students made errors with fine-grained locking, while less than 10% made errors with transactions.

I've recently discovered the Workshop on Duplicating, Deconstructing, and Debunking (WDDD) and have found a handful of neat papers, and this one seemed especially relevant to LtU.

[Edit: Apparently, there is a PPoPP'10 version of this paper with 237 undergraduate students.]

Also, previously on LtU:

Transactional Memory versus Locks - A Comparative Case Study

Despite the fact Tommy McGuire's post mentions Dr. Victor Pankratius's talk was at UT-Austin and the authors of this WDDD'09 paper represent UT-Austin, these are two independent case studies with different programming assignments. The difference in assignments is interesting because it may indicate some statistical noise associated with problem domain complexity (as perceived by the test subjects) and could account for differences between the two studies.

Everyone always likes to talk about usability in programming languages without trying to do it. Some claim it can't even be done, despite the fact Horning and Gannon did work on the subject 3+ decades ago, assessing how one can Language Design to Enhance Program Reliability. This gives a glimpse both on (a) why it is hard (b) how you can still try to do usability testing, rather than determine the truthiness of a language design decision.