archives

Inconsistency Robustness in Foundations

Inconsistency Robustness requires repairing mathematical foundations in the face of contradictions that have arisen over and over again. In the Inconsistency Robustness paradigm, deriving contradictions are a progressive development and not “game stoppers.” Contradictions can be helpful instead of being something to be “swept under the rug” by denying their existence, which has been repeatedly attempted by the Establishment (beginning with some Pythagoreans). Such denial has delayed mathematical development. This article reports how Inconsistency Robustness has recently influenced the foundations of mathematics for Computer Science since the first International Symposium in 2011 continuing a tradition developing the sociological basis for foundations.

That mathematics is thought to be consistent by an overwhelming consensus of working professional mathematicians justifies the use of Proof by Contradiction. In addition, Proof by Contradiction can be used to infer the consistency of mathematics by the following simple proof:

The self-proof is a proof by contradiction.
In order to obtain a contradiction,
assume that mathematics is inconsistent.
Then there is some proposition Φ such that ⊢Φ and ⊢¬Φ.
Consequently, both Φ and ¬Φ are theorems that
can be used in the proof to produce an immediate contradiction.
Therefore mathematics is consistent.

Please note the following points: The above argument mathematically proves the theorem that mathematics is consistent and that it is not a premise of the theorem that mathematics is consistent. However, the proof does not intuitively increase our confidence in the consistency of mathematics because it does not rule out that there might be other proofs in mathematics that result in contradictions.

The above theorem means that the assumption of consistency is deeply embedded in the architecture of classical mathematics. The above proof of consistency can be formalized in Direct Logic [Hewitt 2010] (a powerful inference system in which computer systems can reason about their own inferences). Having a powerful system like Direct Logic is important in computer science because computers must be able to carry out all inferences (including inferences about their own inference processes) without requiring recourse to human intervention.

Self-proving consistency raises that possibility that mathematics could be inconsistent because of contradiction with the result of Gödel et. al. that if mathematics is consistent, then it cannot infer its own consistency. The resolution is to provide a proper grammar of mathematical sentences so that a fixed-point operator cannot be used to construct the kind of “self-referential” proposition used by Gödel in his results by exploiting an untyped grammar of sentences. Self-referential propositions of the kind used by Gödel do not seem to have any important practical applications. (There is a very weak theory called Provability Logic that has been used for self-referential propositions coded as integers, but it is not strong enough for the purposes of computer science.) Direct Logic makes use of a typed grammar that prevents the construction of self-referential sentences using unwanted fixed points. The bottom line is that self-referential propositions are “monsters” (in the sense of Lakatos) that are ruled about by a proper grammar of sentences for the mathematical foundations of computer science. It is important to note that not having self-referential propositions does not place restrictions on recursion in computation, e.g., the Actor Model, untyped lambda calculus, etc.

A mathematical theory is an extension of mathematics whose proofs are computationally enumerable. For example, group theory is obtained by adding the axioms of groups to Direct Logic along with the requirement that proofs are computational enumerable. If a mathematical theory T is consistent, then it is inferentially undecidable (i.e. there is a proposition Ψ such that ⊬TΨ and ⊬T¬Ψ (which is sometimes called “incompleteness” in classical terminology) because provability in T is computationally undecidable [Church 1936, Turing 1936].

Information Invariance is a fundamental technical goal of logic consisting of the following:
1. Soundness of inference: information is not increased by inference
2. Completeness of inference: all information that necessarily holds can be inferred
Direct Logic aims to achieve information invariance for the mathematical foundations of Computer Science. But that a mathematical theory is inferentially undecidable (“incomplete” in classical terminology) with respect to Ψ (above) does not mean incompleteness with respect to the information that can be inferred because (by construction) it is provable in mathematics that ⊬TΨ and ⊬T¬Ψ.

This article has become highly controversial and the Establishment has censored (without substantive justification) its publication in electronic archives that are intended to record priority dates for scientific results. Consequently, this article is itself another episode in the ongoing saga of inconsistency robustness in foundations.

The article for the above abstract can be found here: Inconsistency Robustness in Foundations