archives

The Unison Programming Platform

Unison - a next-generation programming platform, by Paul Chiusano:

  • Programs are edited in a (browser-based) semantic editor which guarantees programs are well-formed and typecheck by construction
  • The codebase is a purely functional data structure
  • The program is a UI, and UI interaction is programming
  • Persistent data sources must be accessible via a high-level, typed API

An interesting project mentioned in a comment a few weeks ago, it now has its own website and a more descriptive abstract overview explaining it's core premises.

Previous posts on Paul's blog are also of interest, and some feature videos demonstrating some aspects of Unison.

Pycket: A Tracing JIT For a Functional Language

Pycket: A Tracing JIT For a Functional Language
Spenser Bauman, Carl Friedrich Bolz, Robert Hirschfeld, Vasily Krilichev, Tobias Pape, Jeremy Siek, and Sam Tobin-Hochstadt
2015

We present Pycket, a high-performance tracing JIT compiler for Racket. Pycket supports a wide variety of the sophisticated features in Racket such as contracts, continuations, classes, structures, dynamic binding, and more. On average, over a standard suite of benchmarks, Pycket outperforms existing compilers, both Racket’s JIT and other highly-optimizing Scheme compilers. Further, Pycket provides much better performance for proxies than existing systems, dramatically reducing the overhead of contracts and gradual typing. We validate this claim with performance evaluation on multiple existing benchmark suites.

The Pycket implementation is of independent interest as an application of the RPython meta-tracing framework (originally created for PyPy), which automatically generates tracing JIT compilers from interpreters. Prior work on meta-tracing focuses on bytecode interpreters, whereas Pycket is a high-level interpreter based on the CEK abstract machine and operates directly on abstract syntax trees. Pycket supports proper tail calls and first-class continuations. In the setting of a functional language, where recursion and higher-order functions are more prevalent than explicit loops, the most significant performance challenge for a tracing JIT is identifying which control flows constitute a loop -- we discuss two strategies for identifying loops and measure their impact.