Lengrand & Miquel (2008). Classical Fω, orthogonality and symmetric candidates. Annals of Pure and Applied Logic 153:3-20.
We present a version of system Fω, called Fω^C, in which the layer of type
constructors is essentially the traditional one of Fω, whereas provability
of types is classical. The proof-term calculus accounting for the classical
reasoning is a variant of Barbanera and Berardi’s symmetric λ-calculus.
We prove that the whole calculus is strongly normalising. For the
layer of type constructors, we use Tait and Girard’s reducibility method
combined with orthogonality techniques. For the (classical) layer of terms,
we use Barbanera and Berardi’s method based on a symmetric notion of
reducibility candidate. We prove that orthogonality does not capture the
fixpoint construction of symmetric candidates.
We establish the consistency of Fω^C, and relate the calculus to the
traditional system Fω, also when the latter is extended with axioms for
classical logic.
Recent comments
27 weeks 2 days ago
27 weeks 2 days ago
27 weeks 2 days ago
49 weeks 3 days ago
1 year 1 week ago
1 year 3 weeks ago
1 year 3 weeks ago
1 year 5 weeks ago
1 year 10 weeks ago
1 year 10 weeks ago