User loginNavigation 
Tagged Arithmetic OptimizationHas there been a paper describing optimizations to arithmetic for tagged pointer representations? For instance, stealing 1bit to distinguish pointers and integers, and using 0 as the tag value for integers, we don't need to perform any shifting for integer addition in order to normalize the integer back to its tagged representation:  integer i is represented as a word shifted by 1 bit:  word = tag(int) tag(int) = int << 2 = word * 2  int = untag(word) untag(word) = word >> 2 = word / 2  no shift needed; subtraction the same addition = int0 + int1 = tag( untag(word0) + untag(word0) ) = tag( (word0 / 2) + (word1 / 2) ) = tag( (word0 + word1) / 2) = 2 * (word0 + word1) / 2 = word0 + word1  one right shift needed to normalize multiplication = int0 * int1 = tag( untag(word0) * untag(word1) ) = tag( (word0 / 2) * (word1 / 2) ) = tag( word0 * word1 / 4 ) = 2 * word0 * word1 / 4 = word0 * word1 / 2  one left shift needed to normalize division = int0 / int1 = tag( untag(word0) / untag(word1) ) = tag( (word0 / 2) / (word1 / 2) ) = tag(word0 / word1) = 2 * (word0 / word1) etc. Obviously these can be derived from basic arithmetic, but it's a bit tedious, so I was wondering if there was a reference describing a full set of such identities, or any more sophisticated optimizations. Perhaps a tag calculus of sorts. Of course, care must be taken to handle overflow on the word when adding and multiplying, but I think "branch on overflow" is a fairly common instruction, and would provide for an efficient implementation to tweak the result. By naasking at 20090203 00:02  LtU Forum  previous forum topic  next forum topic  other blogs  4767 reads

Browse archivesActive forum topics 
Recent comments
1 hour 15 min ago
10 hours 47 min ago
13 hours 27 min ago
14 hours 55 min ago
16 hours 38 min ago
17 hours 55 min ago
18 hours 2 min ago
18 hours 6 min ago
18 hours 7 min ago
1 day 18 hours ago