Physics, Topology, Logic and Computation: A Rosetta Stone by John C. Baez and Mike Stay, 2009.
In physics, Feynman diagrams are used to reason about quantum processes. In the 1980s, it became clear
that underlying these diagrams is a powerful analogy between quantum physics and topology. Namely, a linear
operator behaves very much like a `cobordism': a manifold representing spacetime, going between two
manifolds representing space. This led to a burst of work on topological quantum field theory and `quantum
topology'. But this was just the beginning: similar diagrams can be used to reason about logic, where
they represent proofs, and computation, where they represent programs. With the rise of interest in quantum
cryptography and quantum computation, it became clear that there is extensive network of analogies between
physics, topology, logic and computation. In this expository paper, we make some of these analogies precise
using the concept of `closed symmetric monoidal category'. We assume no prior knowledge of category
theory, proof theory or computer science.
I am not sure whether this should be categorized as "Fun" instead of "Theory", given that "We assume no prior knowledge of category theory, proof theory or computer science".
At least one pair from the title (logic and computation) should ring some bells...
Recent comments
23 hours 49 min ago
1 day 35 min ago
1 day 21 hours ago
2 days 23 min ago
2 days 49 min ago
4 days 4 hours ago
4 days 15 hours ago
4 days 15 hours ago
4 days 16 hours ago
4 days 16 hours ago