From F to DOT: Type Soundness Proofs with Definitional Interpreters by Tiark Rompf and Nada Amin:
Scala's type system unifies aspects of ML-style module systems, object-oriented, and functional programming paradigms. The DOT (Dependent Object Types) family of calculi has been proposed as a new theoretic foundation for Scala and similar expressive languages. Unfortunately, type soundness has only been established for a very restricted subset of DOT (muDOT), and it has been shown that adding important Scala features such as type refinement or extending subtyping to a lattice breaks at least one key metatheoretic property such as narrowing or subtyping transitivity, which are usually required for a type soundness proof.
The first main contribution of this paper is to demonstrate how, perhaps surprisingly, even though these properties are lost in their full generality, a richer DOT calculus that includes both type refinement and a subtyping lattice with intersection types can still be proved sound. The key insight is that narrowing and subtyping transitivity only need to hold for runtime objects, but not for code that is never executed. Alas, the dominant method of proving type soundness, Wright and Felleisen's syntactic approach, is based on term rewriting, which does not make an adequate distinction between runtime and type assignment time.
The second main contribution of this paper is to demonstrate how type soundness proofs for advanced, polymorphic, type systems can be carried out with an operational semantics based on high-level, definitional interpreters, implemented in Coq. We present the first mechanized soundness proof for System F<: based on a definitional interpreter. We discuss the challenges that arise in this setting, in particular due to abstract types, and we illustrate in detail how DOT-like calculi emerge from straightforward generalizations of the operational aspects of F<:.
Not only they solve a problem that has been open for 12 years, but they also deploy interesting techniques to make the proof possible and simple. As they write themselves, that includes the first type-soundness proof for F<: using definitional interpreters — that is, at least according to some, denotational semantics.
Understated Twitter announcement here.
Recent comments
25 weeks 6 days ago
25 weeks 6 days ago
25 weeks 6 days ago
48 weeks 15 hours ago
1 year 1 day ago
1 year 1 week ago
1 year 1 week ago
1 year 4 weeks ago
1 year 9 weeks ago
1 year 9 weeks ago