Temporal Higher Order Contracts

Temporal Higher Order Contracts
Tim Disney, Cormac Flanagan, Jay McCarthy
2011

Behavioral contracts are embraced by software engineers because they document module interfaces, detect interface violations, and help identify faulty modules (packages, classes, functions, etc). This paper extends prior higher-order contract systems to also express and enforce temporal properties, which are common in software systems with imperative state, but which are mostly left implicit or are at best informally specified. The paper presents both a programmatic contract API as well as a temporal contract language, and reports on experience and performance results from implementing these contracts in Racket.

Our development formalizes module behavior as a trace of events such as function calls and returns. Our contract system provides both non-interference (where contracts cannot influence correct executions) and also a notion of completeness (where contracts can enforce any decidable, prefix-closed predicate on event traces).

This paper appears to be about a way to define (and enforce through dynamic monitoring) correctness properties of APIs by enforcing or ruling out certain orderings of function calls, such as calling a "read" method on a file descriptor after having called "close". I am personally not convinced that this specification language is a good way to solve these problems. However, the bulk of the paper is actually about giving a denotational semantics to contracts, as specifying a set of traces that the external interface of a component may expose (in a way strongly reminding of game semantics), and this feels like an important technique to reason about contracts. The exposition of this contribution is practical (based on a simple abstract machine) and accessible.