Set-Theoretic Types for Polymorphic Variants by Giuseppe Castagna, Tommaso Petrucciani, and Kim Nguyễn:

Polymorphic variants are a useful feature of the OCaml language whose current definition and implementation rely on kinding constraints to simulate a subtyping relation via unification. This yields an awkward formalization and results in a type system whose behaviour is in some cases unintuitive and/or unduly restrictive.

In this work, we present an alternative formalization of polymorphic variants, based on set-theoretic types and subtyping, that yields a cleaner and more streamlined system. Our formalization is more expressive than the current one (it types more programs while preserving type safety), it can internalize some meta-theoretic properties, and it removes some pathological cases of the current implementation resulting in a more intuitive and, thus, predictable type system. More generally, this work shows how to add full-fledged union types to functional languages of the ML family that usually rely on the Hindley-Milner type system. As an aside, our system also improves the theory of semantic subtyping, notably by proving completeness for the type reconstruction algorithm.

Looks like a nice result. They integrate union types and restricted intersection types for complete type inference, which prior work on CDuce could not do. The disadvantage is that it does not admit principal types, and so inference is non-deterministic (see section 5.3.2).

## Recent comments

1 hour 22 min ago

1 hour 22 min ago

1 hour 58 min ago

3 hours 32 min ago

5 hours 51 min ago

8 hours 39 min ago

9 hours 16 min ago

10 hours 6 min ago

16 hours 42 min ago

16 hours 47 min ago