User loginNavigation 
Conversion of 'functional' to 'imperative' algorithms: is it possible?Does anybody know any work done on conversion of 'functional' to 'imperative' algorithms? I am asking this because, while doing some mental exercises with algorithms to help me understand functional programming better, I realized that any functional algorithm could be converted to an imperative one, in order to save resources and increase performance. The way I work goes like this: i write down a functional algorithm, then try to optimize it by converting it to an imperative one using assigments. I try to reuse memory space, so as that the algorithm becomes faster, without loosing the meaning (and maybe correctness) of the functional algorithm. Let me give you an example. Let's just say we have the following simple function: let f(x) = x + 1 which is used here: let g(y) with let a = f(y) = a + 2 We can see that the above is equal to (assignment is operator ':='; operator ',' is used for sequence of operations): let g(y) = y := y + 1, (* reuse variable 'y' *) y + 2 In the above example, the variable 'y' is reused (I am talking about variables here, not value bindings, because I am talking about implementation): instead of using an intermediate variable 'a', the compiler reuses the variable 'y', increases it by 1, then adds '2' to it and returns the result. Of course the above example is trivial and the relevant optimization may already take place in modern FP compilers. But what about more complex examples? For example, I was thinking about the 'quicksort' algorithm. The functional algorithm goes like this (in a imaginative mixture of functional and imperative syntax, using 'h:t' for headtail list representation): (* input is a list with first element as 'head' and the rest of elements as 'tail' *) let qsort(head:tail) with (* less and greater than nil is nil *) let less(e, nil) = nil let greater(e, nil) = nil (* calculate elements of input list 'h:t' less than 'e' *) let less(e, h:t) = (if h < e then h else nil) + less(e, t) (* calculate elements of input list 'h:t' greater than 'e' *) let greater(e, h:t) = (if h > e then h else nil) + greater(e, t) = (* the result is: less elements + head + greater elements *) qsort(less(head, tail)) + head + qsort(greater(head, tail)) The actual implementation of the algorithm is quite slow, since it copies data around in a new list for each 'invocation' (I am not talking 'reduction' here, because I speak about actual code running on a computer). The ideal would be if the above functional algorithm could be converted automatically to an imperative one that does inplace sorting. If we examine closely the above quicksort algorithm, we will see that the algorithm does the following things:
Let's see if we can speed up the above algorithm (let's name it quicksort A) by using two lists: a list A which is the input list and a list B which is the output list. Instead of creating new lists, we are going to use list B as an intermediate list for sorting elements, without changing the basic logic behind the sorting algorithm. The 'less' function can be written like this: let less(e, ha:ta, out hb:tb) = if ha < e then hb := ha, (* copy value of element 'ha' to 'hb' *) less(e, ta, tb) (* process rest of elements of A into tail of B *) else less(e, ta, hb:tb) (* process rest of elements of A into B *) The above algorithm uses another list B to accumulate the 'less than first element' data of a list. The 'greater' algorithm can be written in the same way. Now the qsort algorithm becomes: (* input is list 'ha:ta', output is list B, which must have the same length as 'ha:ta' *) let qsort(ha:ta, out B) with let temp = List(sizeof(ha:ta)) (* temp is a list with same size as list 'ha:ta' *) = less(ha, ta, temp), (* accumulate elements of 'ta' less than 'ha' into 'temp' *) qsort(temp, B), (* sort temp list into B *) B[sizeof(temp)] := ha, (* copy 'ha' right after 'temp' sorted into B *) greater(ha, ta, temp), (* accumulate elements of 'ta' greater than 'ta' into 'temp' *) qsort(temp, B + sizeof(temp) + 1) (* sort temp list into B right after the less part and the 'ha' element *) The above algorithm (let's name it quicksort B) can be preferrable than the pure one, because the intermediate variable 'temp' can exist on the stack, thus increasing performance of the program and reducing garbage (or be used for compiletime garbage collection). Here is a working C++ implementation: #include Is it possible to optimize the algorithm further? could the sorting be done without using a second list? The answer is yes. Let's examine the 'logic' behind the sorting again: we traverse a list twice, once for accumulating the elements 'less' than an element and once for accumulating the elements 'greater' than that element. In order to do the 'less' algorithm 'inplace', we have to 'push' elements less than an element in front of the list while pushing greater elements at the end of the list. The algorithm could be like this: (* pushes elements of 'h:t' less than 'e' at beginning of list; function greater is not needed, because all the elements after the 'less' part automatically belong to 'greater' part *) let less(e, out h:t, out f, out l) = if h < e then (* less element is found *) l := f, (* save value of 'f' into position 'l' *) f := h, (* place less element 'h' at beginning of list *) f = next(f), (* set 'f' to next position in list *) l = h, (* note down the 'free' position *) less(e, t, f, l) (* process the rest of elements of 't' *) else less(e, t, f, l) (* less element is not found *) (* quick sort *) let qsort(h:t) with let f = h (* 'f' is the first free entry in the list *) let l = h (* 'l' is the last freed entry in the list *) = less(h, t, f, l), (* push less than 'h' elements to beginning of 't' *) l := f, (* before setting middle element, save the value at middle element position *) f := h, (* set middle element *) qsort(t[begin..f]), (* sort less part *) qsort(t[f+1..end]) (* sort greater part *) Here is the working C++ implementation (let's call this version 'quicksort C'): #include After doing all the above, I realized that I converted the purely functional quicksort A to imperative algorithm quicksort B, and then took that algorithm and convert it to quicksort C, by doing some replacements and adjusting the algorithm for overwriting data. The quicksort C algorithm is quite similar to the known partitioning algorithm (if not the same?). I have come to suspect that:
Since there is no formal way of converting a functional algorithm to an imperative one, programming languages put the burden of assignment on the programmer, thus allowing for assignmentrelated bugs to creep in an application; the actual problem with assignments is that a programmer can easily forget when an assignment affects another part of a program. If a compiler could convert a functional algorithm to an imperative one so as that the least possible amount of resources is spent (least copying / least garbage), then functional programming languages could easily reach imperative languages' performance, while keeping their 'pure' properties. I searched the web but I did not find a relevant paper. Does anybody know anything about this? I apologise if this is something stupid or if I did some stupid mistake or already proven not feasible, but my interest is great on this subject. By Achilleas Margaritis at 20050719 14:00  LtU Forum  previous forum topic  next forum topic  other blogs  12729 reads

Browse archivesActive forum topics 
Recent comments
1 hour 16 min ago
4 hours 54 min ago
18 hours 53 min ago
21 hours 6 min ago
1 day 3 hours ago
1 day 13 hours ago
1 day 14 hours ago
1 day 16 hours ago
1 day 17 hours ago
1 day 17 hours ago