LTL types FRP

Alan Jeffrey (to appear 2012) LTL types FRP: Linear-time Temporal Logic Propositions as Types, Proofs as Functional Reactive Programs. To be presented at next year's Programming Languages meets Program Verification, (PLPV 2012).
Functional Reactive Programming (FRP) is a form of reactive programming whose model is pure functions over signals. FRP is often expressed in terms of arrows with loops, which is the type class for a Freyd category (that is a premonoidal category with a cartesian centre) equipped with a premonoidal trace. This type system suffices to define the dataflow structure of a reactive program, but does not express its temporal properties. In this paper, we show that Linear-time Temporal Logic (LTL) is a natural extension of the type system for FRP, which constrains the temporal behaviour of reactive programs. We show that a constructive LTL can be defined in a dependently typed functional language, and that reactive programs form proofs of constructive LTL properties. In particular, implication in LTL gives rise to stateless functions on streams, and the “constrains” modality gives rise to causal functions. We show that reactive programs form a partially traced monoidal category, and hence can be given as a form of arrows with loops, where the type system enforces that only decoupled functions can be looped.
Via Alan's G+ feed.

Extensible Programming with First-Class Cases

Extensible Programming with First-Class Cases, by Matthias Blume, Umut A. Acar, and Wonseok Chae:

We present language mechanisms for polymorphic, extensible records and their exact dual, polymorphic sums with extensible first-class cases. These features make it possible to easily extend existing code with new cases. In fact, such extensions do not require any changes to code that adheres to a particular programming style. Using that style, individual extensions can be written independently and later be composed to form larger components. These language mechanisms provide a solution to the expression problem.

We study the proposed mechanisms in the context of an implicitly typed, purely functional language PolyR. We give a type system for the language and provide rules for a 2-phase transformation: first into an explicitly typed λ-calculus with record polymorphism, and finally to efficient index-passing code. The first phase eliminates sums and cases by taking advantage of the duality with records.

We implement a version of PolyR extended with imperative features and pattern matching—we call this language MLPolyR. Programs in MLPolyR require no type annotations—the implementation employs a reconstruction algorithm to infer all types. The compiler generates machine code (currently for PowerPC) and optimizes the representation of sums by eliminating closures generated by the dual construction.

This is an elegant solution to the expression problem for languages with pattern matching. This paper was posted twice in LtU comments, but it definitely deserves its own story. Previous solutions to the exression problem are rather more involved, like Garrigue's use of recursion and polymorphic variants, because they lack support for extensible records which makes this solution so elegant.

Extensible records and first-class cases unify object-oriented and functional paradigms on a deeper level, since they enable first-class messages to be directly encoded. Add a sensible system for dynamics, and I argue you have most of the power people claim of dynamic languages without sacrificing the safety of static typing.

The Experimental Effectiveness of Mathematical Proof

The Experimental Effectiveness of Mathematical Proof

The aim of this paper is twofold. First, it is an attempt to give an answer to the famous essay of Eugene Wigner about the unreasonable effectiveness of mathematics in the natural sciences [25]. We will argue that mathematics are not only reasonably effective, but that they are also objectively effective in a sense that can be given a precise meaning. For that—and this is the second aim of this paper—we shall reconsider some aspects of Popper’s epistemology [23] in the light of recent advances of proof theory [8, 20], in order to clarify the interaction between pure mathematical reasoning (in the sense of a formal system) and the use of empirical hypotheses (in the sense of the natural sciences).

The technical contribution of this paper is the proof-theoretic analysis of the problem (already evoked in [23]) of the experimental modus tollens, that deals with the combination of a formal proof of the implication U ⇒ V with an experimental falsification of V to get an experimental falsification of U in the case where the formulæ U and V express empirical theories in a sense close to Popper’s. We propose a practical solution to this problem based on Krivine’s theory of classical realizability [20], and describe a simple procedure to extract from a formal proof of U ⇒ V (formalized in classical second-order arithmetic) and a falsifying instance of V a computer program that performs a finite sequence of tests on the empirical theory U until it finds (in finite time) a falsifying instance of U.

I thought I had already posted this, but apparently not.

Consider this paper the main gauntlet thrown down to those who insist that mathematical logic, the Curry-Howard Isomorphism, etc. might be fine for "algorithmic code" (as if there were any other kind) but is somehow inapplicable the moment a system interacts with the "real" or "outside" world (as if software weren't real).

Update: the author is Alexandre Miquel, and the citation is "Chapitre du livre Anachronismes logiques, à paraître dans la collection Logique, Langage, Sciences, Philosophie, aux Publications de la Sorbonne. Éd.: Myriam Quatrini et Samuel Tronçon, 2010."

A Semantic Model for Graphical User Interfaces

Nick Benton and Neel Krishnaswami, ICFP'11, A Semantic Model for Graphical User Interfaces:

We give a denotational model for graphical user interface (GUI) programming using the Cartesian closed category of ultrametric spaces. [..] We capture the arbitrariness of user input [..] [by a nondeterminism] “powerspace” monad.

Algebras for the powerspace monad yield a model of intuitionistic linear logic, which we exploit in the definition of a mixed linear/non-linear domain-specific language for writing GUI programs. The non-linear part of the language is used for writing reactive stream-processing functions whilst the linear sublanguage naturally captures the generativity and usage constraints on the various linear objects in GUIs, such as the elements of a DOM or scene graph.

We have implemented this DSL as an extension to OCaml, and give examples demonstrating that programs in this style can be short and readable.

This is an application of their (more squiggly) LICS'11 submission, Ultrametric Semantics of Reactive Programs. In both these cases, I find appealing the fact the semantic model led to a type system and a language that was tricky to find.


Opa is a new member in the family of languages aiming to make web programming transparent by automatically generating client-side Javascript and handling communication and session control. Opa is written in OCaml. A hierarchical database and web server are integrated with the language. The distribution model is based on a notion of a session, a construct roughly comparable to process definitions in the join-calculus or to concurrent objects in a number of formalisms.

A good place to start is here. And here you can find several example programs with accompanying source code.

Lightweight Monadic Programming in ML

Lightweight Monadic Programming in ML

Many useful programming constructions can be expressed as monads. Examples include probabilistic modeling, functional reactive programming, parsing, and information flow tracking, not to mention effectful functionality like state and I/O. In this paper, we present a type-based rewriting algorithm to make programming with arbitrary monads as easy as using ML's built-in support for state and I/O. Developers write programs using monadic values of type M t as if they were of type t, and our algorithm inserts the necessary binds, units, and monad-to-monad morphisms so that the program type checks. Our algorithm, based on Jones' qualified types, produces principal types. But principal types are sometimes problematic: the program's semantics could depend on the choice of instantiation when more than one instantiation is valid. In such situations we are able to simplify the types to remove any ambiguity but without adversely affecting typability; thus we can accept strictly more programs. Moreover, we have proved that this simplification is efficient (linear in the number of constraints) and coherent: while our algorithm induces a particular rewriting, all related rewritings will have the same semantics. We have implemented our approach for a core functional language and applied it successfully to simple examples from the domains listed above, which are used as illustrations throughout the paper.

This is an intriguing paper, with an implementation in about 2,000 lines of OCaml. I'm especially interested in its application to probabilistic computing, yielding a result related to Kiselyov and Shan's Hansei effort, but without requiring delimited continuations (not that there's anything wrong with delimited continuations). On a theoretical level, it's nice to see such a compelling example of what can be done once types are freed from the shackle of "describing how bits are laid out in memory" (another such compelling example, IMHO, is type-directed partial evaluation, but that's literally another story).

Levy: a Toy Call-by-Push-Value Language

Andrej Bauer's blog contains the PL Zoo project. In particular, the Levy language, a toy implementation of Paul Levy's CBPV in OCaml.

If you're curious about CBPV, this implementation might be a nice accompaniment to the book, or simply a hands on way to check it out.

It looks like an implementation of CBPV without sum and product types, with complex values, and without effects. I guess a more hands-on way to get to grips with CBPV would be to implement any of these missing features.

The posts are are 3 years old, but I've only just noticed them. The PL Zoo project was briefly mentioned here.

Kleisli Arrows of Outrageous Fortune

Kleisli Arrows of Outrageous Fortune

When we program to interact with a turbulent world, we are to some extent at its mercy. To achieve safety, we must ensure that programs act in accordance with what is known about the state of the world, as determined dynamically. Is there any hope to enforce safety policies for dynamic interaction by static typing? This paper answers with a cautious ‘yes’.

Monads provide a type discipline for effectful programming, mapping value types to computation types. If we index our types by data approximating the ‘state of the world’, we refine our values to witnesses for some condition of the world. Ordinary monads for indexed types give a discipline for effectful programming contingent on state, modelling the whims of fortune in way that Atkey’s indexed monads for ordinary types do not (Atkey, 2009). Arrows in the corresponding Kleisli category represent computations which a reach a given postcondition from a given precondition: their types are just specifications in a Hoare logic!

By way of an elementary introduction to this approach, I present the example of a monad for interacting with a file handle which is either ‘open’ or ‘closed’, constructed from a command interface specfied Hoare-style. An attempt to open a file results in a state which is statically unpredictable but dynamically detectable. Well typed programs behave accordingly in either case. Haskell’s dependent type system, as exposed by the Strathclyde Haskell Enhancement preprocessor, provides a suitable basis for this simple experiment.

I discovered this Googling around in an attempt to find some decent introductory material to Kleisli arrows. This isn't introductory, but it's a good resource. :-) The good introductory material I found was this.

Patterns in Functional Programming

The good news is that Jeremy Gibbons is writing a book on Patterns in Functional Programming. Even better news is that he is blogging about it as he goes along!

Those unfamiliar with the topic may want to begin at the beginning, though I personally just rummaged around. Some may enjoy going to the papers rather than the blog, or even better to the LtU discussions about many of them. Alternatively, I think it might be a great opportunity to ask Jeremy questions using the comments on his blog. I am sure this can be a very productive learning experience, and will surely help the book!

Interview With Albert Gräf - Author of the Pure Programming Language

Albert Gräf is the author of the Pure programming language. Pure is a functional programming language based on term rewriting. It has a syntax featuring curried function applications, lexical closures and equational definitions with pattern matching, and thus is somewhat similar to languages of the Haskell and ML variety. Pure is also a dynamic language, and is more like Lisp in this respect. The interpreter has an LLVM backend that does JIT compilation.

Part 1 and Part 2

XML feed