Cakes, Custard, and Category Theory

Eugenia Cheng's new popular coscience book is out, in the U.K. under the title Cakes, Custard and Category Theory: Easy recipes for understanding complex maths, and in the U.S. under the title How to Bake Pi: An Edible Exploration of the Mathematics of Mathematics:

Most people imagine maths is something like a slow cooker: very useful, but pretty limited in what it can do. Maths, though, isn't just a tool for solving a specific problem - and it's definitely not something to be afraid of. Whether you're a maths glutton or have forgotten how long division works (or never really knew in the first place), the chances are you've missed what really makes maths exciting. Calling on a baker's dozen of entertaining, puzzling examples and mathematically illuminating culinary analogies - including chocolate brownies, iterated Battenberg cakes, sandwich sandwiches, Yorkshire puddings and Möbius bagels - brilliant young academic and mathematical crusader Eugenia Cheng is here to tell us why we should all love maths.

From simple numeracy to category theory ('the mathematics of mathematics'), Cheng takes us through the joys of the mathematical world. Packed with recipes, puzzles to surprise and delight even the innumerate, Cake, Custard & Category Theory will whet the appetite of maths whizzes and arithmophobes alike. (Not to mention aspiring cooks: did you know you can use that slow cooker to make clotted cream?) This is maths at its absolute tastiest.

Cheng, one of the Catsters, gives a guided tour of mathematical thinking and research activities, and through the core philosophy underlying category theory. This is the kind of book you can give to your grandma and grandpa so they can boast to their friends what her grandchildren are doing (and bake you a nice dessert when you come and visit :) ). A pleasant weekend reading.

Don Syme receives a medal for F#

Don Syme receives the Royal Academy of Engineering's Silver Medal for his work on F#. The citation reads:

F# is known for being a clear and more concise language that interoperates well with other systems, and is used in applications as diverse asanalysing the UK energy market to tackling money laundering. It allows programmers to write code with fewer bugs than other languages, so users can get their programme delivered to market both rapidly and accurately. Used by major enterprises in the UK and worldwide, F# is both cross-platform and open source, and includes innovative features such as unit-of-measure inference, asynchronous programming and type providers, which have in turn influenced later editions of C# and other industry languages.


Paul Hudak

These are sad news indeed. I am sure almost everyone here read at least one paper by Paul and many knew him personally. When I just started thinking about programming languages I was fascinated by DSLs and his work was simply inspiring. His voice will be missed.

Discussions of Paul Hudak's work

Update:There is some confusion about the situation. Please see the comments for further information.

John C Reynolds Doctoral Dissertation Award nominations for 2014

Presented annually to the author of the outstanding doctoral dissertation in the area of Programming Languages. The award includes a prize of $1,000. The winner can choose to receive the award at ICFP, OOPSLA, POPL, or PLDI.

I guess it is fairly obvious why professors should propose their students (the deadline is January 4th 2015). Newly minted PhD should, for similar reasons, make sure their professors are reminded of these reasons. I can tell you that the competition is going to be tough this year; but hey, you didn't go into programming language theory thinking it is going to be easy, did you?

Zélus : A Synchronous Language with ODEs

Zélus : A Synchronous Language with ODEs
Timothy Bourke, Marc Pouzet

Zélus is a new programming language for modeling systems that mix discrete logical time and continuous time behaviors. From a user's perspective, its main originality is to extend an existing Lustre-like synchronous language with Ordinary Differential Equations (ODEs). The extension is conservative: any synchronous program expressed as data-flow equations and hierarchical automata can be composed arbitrarily with ODEs in the same source code.

A dedicated type system and causality analysis ensure that all discrete changes are aligned with zero-crossing events so that no side effects or discontinuities occur during integration. Programs are statically scheduled and translated into sequential code that, by construction, runs in bounded time and space. Compilation is effected by source-to-source translation into a small synchronous subset which is processed by a standard synchronous compiler architecture. The resultant code is paired with an off-the-shelf numeric solver.

We show that it is possible to build a modeler for explicit hybrid systems à la Simulink/Stateflow on top of an existing synchronous language, using it both as a semantic basis and as a target for code generation.

Synchronous programming languages (à la Lucid Synchrone) are language designs for reactive systems with discrete time. Zélus extends them gracefully to hybrid discrete/continuous systems, to interact with the physical world, or simulate it -- while preserving their strong semantic qualities.

The paper is short (6 pages) and centered around examples rather than the theory -- I enjoyed it. Not being familiar with the domain, I was unsure what the "zero-crossings" mentioned in the introductions are, but there is a good explanation further down in the paper:

The standard way to detect events in a numeric solver is via zero-crossings where a solver monitors expressions for changes in sign and then, if they are detected, searches for a more precise instant of crossing.

The Zélus website has a 'publications' page with more advanced material, and an 'examples' page with case studies.

Facebook releases "Flow", a statically typed JavaScript variant

The goal of Flow is to find errors in JavaScript code with little programmer effort. Flow relies heavily on type inference to find type errors even when the program has not been annotated - it precisely tracks the types of variables as they flow through the program.

At the same time, Flow is a gradual type system. Any parts of your program that are dynamic in nature can easily bypass the type checker, so you can mix statically typed code with dynamic code.

Flow also supports a highly expressive type language. Flow types can express much more fine-grained distinctions than traditional type systems. For example, Flow helps you catch errors involving null, unlike most type systems.

Read more here.
Here's the announcement from Facebook.

EATCS Award 2014: Gordon Plotkin

Gordon Plotkin is renowned for his groundbreaking contributions to programming language semantics, which have helped to shape the landscape of theoretical computer science, and which have im-pacted upon the design of programming languages and their verification technologies. The in-fluence of his pioneering work on logical frameworks pervades modern proof technologies. In addition, he has made outstanding contributions in machine learning, automated theorem prov-ing, and computer-assisted reasoning. He is still active in research at the topmost level, with his current activities placing him at the forefront of fields as diverse as programming semantics, applied logic, and systems biology.

Well deserved, of course. Congrats!

Inside the Wolfram Language

Video of Stephen Wolfram showing off the Wolfram Language and sharing his perspective on the design of the language at Strange Loop conference.

What's in store for the most widely used language by discerning hackers?

Or, in other words, what's the future of Emacs Lisp (and unavoidable HN discussion).

The original message contains some interesting tidbits. I am not sure how the discussion on emacs-devel will develop. But speculating about things such as Guile elisp is, of course, our bailiwick.

Apple Introduces Swift

Apple today announced a new programming language for their next version of Mac OS X and iOS called Swift.

The Language Guide has more details about the potpourri of language features.

XML feed