Implementation

Reagents: Expressing and Composing Fine-grained Concurrency

Reagents: Expressing and Composing Fine-grained Concurrency, by Aaron Turon:

Efficient communication and synchronization is crucial for finegrained parallelism. Libraries providing such features, while indispensable, are difficult to write, and often cannot be tailored or composed to meet the needs of specific users. We introduce reagents, a set of combinators for concisely expressing concurrency algorithms. Reagents scale as well as their hand-coded counterparts, while providing the composability existing libraries lack.

This is a pretty neat approach to writing concurrent code, which lies somewhere between manually implementing low-level concurrent algorithms and STM. Concurrent algorithms are expressed and composed semi-naively, and Reagents automates the retries for you in case of thread interference (for transient failure of CAS updates), or they block waiting for input from another thread (in case of permanent failure where no input is available).

The core seems to be k-CAS with synchronous communication between threads to coordinate reactions on shared state. The properties seem rather nice, as Aaron describes:

When used in isolation, reagents are guaranteed to perform only the CASes that the hand-written algorithm would, so they introduce no overhead on shared-memory operations; by recoding an algorithm use reagents, you lose nothing. Yet unlike hand-written algorithms, reagents can be composed using choice, tailored with new blocking behavior, or combined into larger atomic blocks.

The benchmarks in section 6 look promising. This appears to be work towards Aaron's thesis which provides many more details.

STABILIZER : Statistically Sound Performance Evaluation

My colleague Mike Rainey described this paper as one of the nicest he's read in a while.

STABILIZER : Statistically Sound Performance Evaluation
Charlie Curtsinger, Emery D. Berger
2013

Researchers and software developers require effective performance evaluation. Researchers must evaluate optimizations or measure overhead. Software developers use automatic performance regression tests to discover when changes improve or degrade performance. The standard methodology is to compare execution times before and after applying changes.

Unfortunately, modern architectural features make this approach unsound. Statistically sound evaluation requires multiple samples to test whether one can or cannot (with high confidence) reject the null hypothesis that results are the same before and after. However, caches and branch predictors make performance dependent on machine-specific parameters and the exact layout of code, stack frames, and heap objects. A single binary constitutes just one sample from the space of program layouts, regardless of the number of runs. Since compiler optimizations and code changes also alter layout, it is currently impossible to distinguish the impact of an optimization from that of its layout effects.

This paper presents STABILIZER, a system that enables the use of the powerful statistical techniques required for sound performance evaluation on modern architectures. STABILIZER forces executions to sample the space of memory configurations by repeatedly re-randomizing layouts of code, stack, and heap objects at runtime. STABILIZER thus makes it possible to control for layout effects. Re-randomization also ensures that layout effects follow a Gaussian distribution, enabling the use of statistical tests like ANOVA. We demonstrate STABILIZER's efficiency (< 7% median overhead) and its effectiveness by evaluating the impact of LLVM’s optimizations on the SPEC CPU2006 benchmark suite. We find that, while -O2 has a significant impact relative to -O1, the performance impact of -O3 over -O2 optimizations is indistinguishable from random noise.

One take-away of the paper is the following technique for validation: they verify, empirically, that their randomization technique results in a gaussian distribution of execution time. This does not guarantee that they found all the source of measurement noise, but it guarantees that the source of noise they handled are properly randomized, and that their effect can be reasoned about rigorously using the usual tools of statisticians. Having a gaussian distribution gives you much more than just "hey, taking the average over these runs makes you resilient to {weird hardward effect blah}", it lets you compute p-values and in general use statistics.

mbeddr: an Extensible C-based Programming Language and IDE for Embedded Systems

Markus Voelter, Bernd Kolb1, Daniel Ratiu, and Bernhard Schaetz, "mbeddr: an Extensible C-based Programming Language and IDE for Embedded Systems", SplashCON/Wavefront 2012.

Although embedded systems are an increasingly large part of our lives, and despite the fact that embedded software would undoubtedly benefit from the kind safety guarantees provided by more advanced type systems, most embedded software development is still done in C. That's partly a result of toolchain availability, and partly because many more advanced languages typically impose requirements on memory, dynamic memory allocation, and other runtime infrastructure that simply aren't supportable on a lot of resource-constrained microcontrollers or acceptable in a risk-averse environment. Mbeddr seems to be seeking a middle ground between C, and creating a whole new language. From the paper:

While the C programming language provides very good support for writing efficient, low-level code, it does not offer adequate means for defining higher-level abstractions relevant to embedded software. In this paper we present the mbeddr technology stack that supports extension of C with constructs adequate for embedded systems. In mbeddr, efficient low-level programs can be written using the well-known concepts from C. Higher level domain-specific abstractions can be seamlessly integrated into C by means of modular language extension regarding syntax, type system, semantics and IDE. In the paper we show how language extension can address the challenges of embedded software development and report on our experience in building these extensions. We show that language workbenches deliver on the promise of significantly reducing the effort of language engineering and the construction of corresponding IDEs. mbeddr is built on top of the JetBrains MPS language workbench. Both MPS and mbeddr are open source software

It appears that mbeddr allows multiple DSLs to be built on top of C to provide greater safety and more domain-specific expressions of typical embedded software patterns. Additionally, it provides integration with various analysis tools including model-checkers. Another paper, "Preliminary Experience of using mbeddr for Developing Embedded Software", provides a look at how all of these things fit together in use.

The mbeddr approach seems similar in concept to Ivory and Tower, although mbeddr uses JetBrains MPS as the platform for creating DSLs instead of building an embedded DSL in Haskell.

Don Syme receives a medal for F#

Don Syme receives the Royal Academy of Engineering's Silver Medal for his work on F#. The citation reads:


F# is known for being a clear and more concise language that interoperates well with other systems, and is used in applications as diverse asanalysing the UK energy market to tackling money laundering. It allows programmers to write code with fewer bugs than other languages, so users can get their programme delivered to market both rapidly and accurately. Used by major enterprises in the UK and worldwide, F# is both cross-platform and open source, and includes innovative features such as unit-of-measure inference, asynchronous programming and type providers, which have in turn influenced later editions of C# and other industry languages.

Congratulations!

Draining the Swamp: Micro Virtual Machines as Solid Foundation for Language Development

Draining the Swamp: Micro Virtual Machines as Solid Foundation for Language Development
Kunshan Wang, Yi Lin, Stephen Blackburn, Michael Norrish, Antony Hosking
2015

Many of today's programming languages are broken. Poor performance, lack of features and hard-to-reason-about semantics can cost dearly in software maintenance and inefficient execution. The problem is only getting worse with programming languages proliferating and hardware becoming more complicated. An important reason for this brokenness is that much of language design is implementation-driven. The difficulties in implementation and insufficient understanding of concepts bake bad designs into the language itself. Concurrency, architectural details and garbage collection are three fundamental concerns that contribute much to the complexities of implementing managed languages. We propose the micro virtual machine, a thin abstraction designed specifically to relieve implementers of managed languages of the most fundamental implementation challenges that currently impede good design. The micro virtual machine targets abstractions over memory (garbage collection), architecture (compiler backend), and concurrency. We motivate the micro virtual machine and give an account of the design and initial experience of a concrete instance, which we call Mu, built over a two year period. Our goal is to remove an important barrier to performant and semantically sound managed language design and implementation.
Inside you will find the specification of an LLVM-inspired virtual instruction set with a memory model (enables proper GC support) including a specification of concurrent weak-memory operations (reusing C(++)11, a debatable choice), relatively rich control-flow primitive (complete stack capture enabling coroutines or JIT-style de-optimization), and live code update.

Pycket: A Tracing JIT For a Functional Language

Pycket: A Tracing JIT For a Functional Language
Spenser Bauman, Carl Friedrich Bolz, Robert Hirschfeld, Vasily Krilichev, Tobias Pape, Jeremy Siek, and Sam Tobin-Hochstadt
2015

We present Pycket, a high-performance tracing JIT compiler for Racket. Pycket supports a wide variety of the sophisticated features in Racket such as contracts, continuations, classes, structures, dynamic binding, and more. On average, over a standard suite of benchmarks, Pycket outperforms existing compilers, both Racket’s JIT and other highly-optimizing Scheme compilers. Further, Pycket provides much better performance for proxies than existing systems, dramatically reducing the overhead of contracts and gradual typing. We validate this claim with performance evaluation on multiple existing benchmark suites.

The Pycket implementation is of independent interest as an application of the RPython meta-tracing framework (originally created for PyPy), which automatically generates tracing JIT compilers from interpreters. Prior work on meta-tracing focuses on bytecode interpreters, whereas Pycket is a high-level interpreter based on the CEK abstract machine and operates directly on abstract syntax trees. Pycket supports proper tail calls and first-class continuations. In the setting of a functional language, where recursion and higher-order functions are more prevalent than explicit loops, the most significant performance challenge for a tracing JIT is identifying which control flows constitute a loop -- we discuss two strategies for identifying loops and measure their impact.

The Unison Programming Platform

Unison - a next-generation programming platform, by Paul Chiusano:

  • Programs are edited in a (browser-based) semantic editor which guarantees programs are well-formed and typecheck by construction
  • The codebase is a purely functional data structure
  • The program is a UI, and UI interaction is programming
  • Persistent data sources must be accessible via a high-level, typed API

An interesting project mentioned in a comment a few weeks ago, it now has its own website and a more descriptive abstract overview explaining it's core premises.

Previous posts on Paul's blog are also of interest, and some feature videos demonstrating some aspects of Unison.

BER MetaOCaml -- an OCaml dialect for multi-stage programming

BER MetaOCaml -- an OCaml dialect for multi-stage programming
Oleg Kiselyov
2010-2015-

BER MetaOCaml is a conservative extension of OCaml for ``writing programs that generate programs''. BER MetaOCaml adds to OCaml the type of code values (denoting ``program code'', or future-stage computations), and two basic constructs to build them: quoting and splicing. The generated code can be printed, stored in a file -- or compiled and linked-back to the running program, thus implementing run-time code optimization. A well-typed BER MetaOCaml program generates only well-scoped and well-typed programs: The generated code shall compile without type errors. The generated code may run in the future but it is type checked now. BER MetaOCaml is a complete re-implementation of the original MetaOCaml by Walid Taha, Cristiano Calcagno and collaborators.

Introduction to staging and MetaOCaml

The standard example of meta-programming -- the running example of A.P.Ershov's 1977 paper that begat partial evaluation -- is the power function, computing x^n. In OCaml:

let square x = x * x

let rec power n x =
  if n = 0 then 1
  else if n mod 2 = 0 then square (power (n/2) x)
  else x * (power (n-1) x)

[...]

In MetaOCaml, we may also specialize the power function to a particular value n, obtaining the code which will later receive x and compute x^n. We re-write power n x annotating expressions as computed `now' (when n is known) or `later' (when x is given).

let rec spower n x =
  if n = 0 then .<1>.
  else if n mod 2 = 0 then .<square .~(spower (n/2) x)>.
  else .<.~x * .~(spower (n-1) x)>.;;
A brief history of (BER) MetaOCaml

As MetaOCaml was being developed, new versions of the mainline OCaml were released with sometimes many fixes and improvements. The MetaOCaml team tracked new OCaml releases and merged the changes into MetaOCaml. (The MetaOCaml version number has as its base OCaml's release version.) The merge was not painless. For example, any new function in the OCaml compiler that dealt with Parsetree (AST) or Typedtree has to be modified to handle MetaOCaml extensions to these data structures. The merge process became more and more painful as the two languages diverged. For instance, native code compilation that first appeared in MetaOCaml 3.07 relied on SCaml, a large set of patches to OCaml by malc at pulsesoft.com to support dynamic linking. OCaml 3.08 brought many changes that were incompatible with SCaml. Therefore, in MetaOCaml 3.08 the native compilation mode was broken. The mode was brought back in the Summer 2005, by re-engineering the SCaml patch and implementing the needed parts of dynamic linking without any modification to the OCaml code. The revived native compilation has survived through the end.

[...]

BER MetaOCaml has been re-structured to minimize the amount of changes to the OCaml type-checker and to separate the `kernel' from the `user-level'. The kernel is a set of patches and additions to OCaml, responsible for producing and type-checking code values. The processing of built code values -- so-called `running' -- is user-level. Currently the user-level metalib supports printing, type-checking, and byte-compiling and linking of code values. Users have added other ways of running the code, for example, compiling it to machine code, C or LLVM -- without any need to hack into (Meta)OCaml or even recompile it.

[...]

By relying on attributes, the feature of OCaml 4.02, BER N102 has become much closer integrated with OCaml. It is instructive to compare the amount of changes BER MetaOCaml makes to the OCaml distribution. The previous version (BER N101) modified 32 OCaml files. The new BER N102 modifies only 7 (that number could be further reduced to only 2; the only file with nontrivial modifications is typing/typecore.ml). It is now a distinct possibility that -- with small hooks that may be provided in the future OCaml versions -- MetaOCaml becomes just a regular library or a plug-in, rather being a fork.

sml-family.org

In his blog, Bob Harper, in joint effort with Dave MacQueen and Lars Bergstrom, announces the launch of sml-family.org:

The Standard ML Family project provides a home for online versions of various formal definitions of Standard ML, including the "Definition of Standard ML, Revised" (Standard ML 97). The site also supports coordination between different implementations of the Standard ML (SML) programming language by maintaining common resources such as the documentation for the Standard ML Basis Library and standard test suites. The goal is to increase compatibility and resource sharing between Standard ML implementations.

The site includes a history section devoted to the history of ML, and of Standard ML in particular. This section will contain a collection of original source documents relating to the design of the language.

Inferring algebraic effects

Logical methods in computer science just published Matija Pretnar's latest take on algebraic effects and handlers:

We present a complete polymorphic effect inference algorithm for an ML-style language with handlers of not only exceptions, but of any other algebraic effect such as input & output, mutable references and many others. Our main aim is to offer the programmer a useful insight into the effectful behaviour of programs. Handlers help here by cutting down possible effects and the resulting lengthy output that often plagues precise effect systems. Additionally, we present a set of methods that further simplify the displayed types, some even by deliberately hiding inferred information from the programmer.

Pretnar and Bauer's Eff has made previous appearances here on LtU. Apart from the new fangled polymorphic effect system, this paper also contains an Eff tutorial.

XML feed