Theory
Eugenia Cheng's new popular coscience book is out, in the U.K. under the title Cakes, Custard and Category Theory: Easy recipes for understanding complex maths, and in the U.S. under the title How to Bake Pi: An Edible Exploration of the Mathematics of Mathematics:
Most people imagine maths is something like a slow cooker: very useful, but pretty limited in what it can do. Maths, though, isn't just a tool for solving a specific problem  and it's definitely not something to be afraid of. Whether you're a maths glutton or have forgotten how long division works (or never really knew in the first place), the chances are you've missed what really makes maths exciting. Calling on a baker's dozen of entertaining, puzzling examples and mathematically illuminating culinary analogies  including chocolate brownies, iterated Battenberg cakes, sandwich sandwiches, Yorkshire puddings and Möbius bagels  brilliant young academic and mathematical crusader Eugenia Cheng is here to tell us why we should all love maths.
From simple numeracy to category theory ('the mathematics of mathematics'), Cheng takes us through the joys of the mathematical world. Packed with recipes, puzzles to surprise and delight even the innumerate, Cake, Custard & Category Theory will whet the appetite of maths whizzes and arithmophobes alike. (Not to mention aspiring cooks: did you know you can use that slow cooker to make clotted cream?) This is maths at its absolute tastiest.
Cheng, one of the Catsters, gives a guided tour of mathematical thinking and research activities, and through the core philosophy underlying category theory. This is the kind of book you can give to your grandma and grandpa so they can boast to their friends what her grandchildren are doing (and bake you a nice dessert when you come and visit :) ). A pleasant weekend reading.
SelfRepresentation in Girard’s System U, by Matt Brown and Jens Palsberg:
In 1991, Pfenning and Lee studied whether System F could support a typed selfinterpreter. They concluded that typed selfrepresentation for System F “seems to be impossible”, but were able to represent System F in Fω. Further, they found that the representation of Fω requires kind polymorphism, which is outside Fω. In 2009, Rendel, Ostermann and Hofer conjectured that the representation of kindpolymorphic terms would require another, higher form of polymorphism. Is this a case of infinite regress?
We show that it is not and present a typed selfrepresentation for Girard’s System U, the first for a λcalculus with decidable type checking. System U extends System Fω with kind polymorphic terms and types. We show that kind polymorphic types (i.e. types that depend on kinds) are sufficient to “tie the knot” – they enable representations of kind polymorphic terms without introducing another form of polymorphism. Our selfrepresentation supports operations that iterate over a term, each of which can be applied to a representation of itself. We present three typed selfapplicable operations: a selfinterpreter that recovers a term from its representation, a predicate that tests the intensional structure of a term, and a typed continuationpassingstyle (CPS) transformation – the first typed selfapplicable CPS transformation. Our techniques could have applications from verifiably typepreserving metaprograms, to growable typed languages, to more efficient selfinterpreters.
Typed selfrepresentation has come up here on LtU in the past. I believe the best selfinterpreter available prior to this work was a variant of Barry Jay's SFcalculus, covered in the paper Typed SelfInterpretation by Pattern Matching (and more fully developed in Structural Types for the Factorisation Calculus). These covered statically typed selfinterpreters without resorting to undecidable type:type rules.
However, being combinator calculi, they're not very similar to most of our programming languages, and so selfinterpretation was still an active problem. Enter Girard's System U, which features a more familiar type system with only kind * and kindpolymorphic types. However, System U is not strongly normalizing and is inconsistent as a logic. Whether selfinterpretation can be achieved in a strongly normalizing language with decidable type checking is still an open problem.
The Next Stage of Staging, by Jun Inoue, Oleg Kiselyov, Yukiyoshi Kameyama:
This position paper argues for typelevel metaprogramming, wherein types and type declarations are generated in addition to program terms. Termlevel metaprogramming, which allows manipulating expressions only, has been extensively studied in the form of staging, which ensures static type safety with a clean semantics with hygiene (lexical scoping). However, the corresponding development is absent for type manipulation. We propose extensions to staging to cover MLstyle module generation and show the possibilities they open up for type specialization and overheadfree parametrization of data types equipped with operations. We outline the challenges our proposed extensions pose for semantics and type safety, hence offering a starting point for a longterm program in the next stage of staging research. The key observation is that type declarations do not obey scoping rules as variables do, and that in metaprogramming, types are naturally prone to escaping the lexical environment in which they were declared. This sets nextstage staging apart from dependent types, whose benefits and implementation mechanisms overlap with our proposal, but which does not deal with typedeclaration generation. Furthermore, it leads to an interesting connection between staging and the logic of definitions, adding to the study’s theoretical significance.
A position paper describing the next logical progression of staging to metaprogramming over types. Now with the true firstclass modules of 1ML, perhaps there's a clearer way forward.
In this year's POPL, Bob Atkey made a splash by showing how to get from parametricity to conservation laws, via Noether's theorem:
Invariance is of paramount importance in programming languages and in physics. In programming languages, John Reynolds’ theory of relational parametricity demonstrates that parametric polymorphic programs are invariant under change of data representation, a property that yields “free” theorems about programs just from their types. In physics, Emmy Noether showed that if the action of a physical system is invariant under change of coordinates, then the physical system has a conserved quantity: a quantity that remains constant for all time. Knowledge of conserved quantities can reveal deep properties of physical systems. For example, the conservation of energy, which by Noether’s theorem is a consequence of a system’s invariance under timeshifting.
In this paper, we link Reynolds’ relational parametricity with Noether’s theorem for deriving conserved quantities. We propose an extension of System Fω with new kinds, types and term constants for writing programs that describe classical mechanical systems in terms of their Lagrangians. We show, by constructing a relationally parametric model of our extension of Fω, that relational parametricity is enough to satisfy the hypotheses of Noether’s theorem, and so to derive conserved quantities for free, directly from the polymorphic types of Lagrangians expressed in our system.
In case this one went under the radar, at POPL'12, Martín Escardó gave a tutorial on seemingly impossible functional programs:
Programming language semantics is typically applied to
prove compiler correctness and allow (manual or automatic) program
verification. Certain kinds of semantics can also be applied to
discover programs that one wouldn't have otherwise thought of. This is
the case, in particular, for semantics that incorporate topological
ingredients (limits, continuity, openness, compactness). For example,
it turns out that some function types (X > Y) with X infinite (but
compact) do have decidable equality, contradicting perhaps popular
belief, but certainly not (highertype) computability theory. More
generally, one can often check infinitely many cases in finite time.
I will show you such programs, run them fast in surprising instances,
and introduce the theory behind their derivation and working. In
particular, I will study a single (very high type) program that (i)
optimally plays sequential games of unbounded length, (ii) implements
the Tychonoff Theorem from topology (and builds finitetime search
functions for infinite sets), (iii) realizes the doublenegation shift
from proof theory (and allows us to extract programs from classical
proofs that use the axiom of countable choice). There will be several
examples in the languages Haskell and Agda.
A shorter version (coded in Haskell) appears in Andrej Bauer's blog.
In his blog, Bob Harper, in joint effort with Dave MacQueen and Lars Bergstrom, announces the launch of smlfamily.org:
The Standard ML Family project provides a home for online versions of various formal definitions of Standard ML, including the "Definition of Standard ML, Revised" (Standard ML 97). The site also supports coordination between different implementations of the Standard ML (SML) programming language by maintaining common resources such as the documentation for the Standard ML Basis Library and standard test suites. The goal is to increase compatibility and resource sharing between Standard ML implementations.
The site includes a history section devoted to the history of ML, and of Standard ML in particular. This section will contain a collection of original source documents relating to the design of the language.
Logical methods in computer science just published Matija Pretnar's latest take on algebraic effects and handlers:
We present a complete polymorphic effect inference algorithm for an MLstyle language with handlers of not only exceptions, but of any other algebraic effect such as input & output, mutable references and many others. Our main aim is to offer the programmer a useful insight into the effectful behaviour of programs. Handlers help here by cutting down possible effects and the resulting lengthy output that often plagues precise effect systems. Additionally, we present a set of methods that further simplify the displayed types, some even by deliberately hiding inferred information from the programmer.
Pretnar and Bauer's Eff has made previous appearances here on LtU. Apart from the new fangled polymorphic effect system, this paper also contains an Eff tutorial.
Breaking the Complexity Barrier of Pure Functional Programs with Impure Data Structures by Pieter Wuille and Tom Schrijvers:
Pure functional programming language offer many advantages over impure languages. Unfortunately, the absence of destructive update, imposes a complexity barrier. In imperative languages, there are algorithms and data structures with better complexity. We present our project for combining existing program transformation techniques to transform inefficient pure data structures into impure ones with better complexity. As a consequence, the programmer is not exposed to the impurity and retains the advantages of purity.
This paper is along the same lines a question I asked a couple of years ago. The idea here is to allow programming using immutable interfaces, and then automatically transform it into a more efficient mutable equivalent.
Earlier this week Microsoft Research Cambridge organised a Festschrift for Luca Cardelli. The preface from the book:
Luca Cardelli has made exceptional contributions to the world of programming
languages and beyond. Throughout his career, he has reinvented himself every
decade or so, while continuing to make true innovations. His achievements span
many areas: software; language design, including experimental languages;
programming language foundations; and the interaction of programming languages
and biology. These achievements form the basis of his lasting scientific leadership
and his wide impact.
...
Luca is always asking "what is new", and is always looking to
the future. Therefore, we have asked authors to produce short pieces that would
indicate where they are today and where they are going. Some of the resulting
pieces are short scientific papers, or abridged versions of longer papers; others are
less technical, with thoughts on the past and ideas for the future. We hope that
they will all interest Luca.
Hopefully the videos will be posted soon.
Propositions as Types, Philip Wadler. Draft, March 2014.
The principle of Propositions as Types links logic to computation. At first sight it appears to be a simple coincidencealmost a punbut it turns out to be remarkably robust, inspiring the design of theorem provers and programming languages, and continuing to influence the forefronts of computing. Propositions as Types has many names and many origins, and is a notion with depth, breadth, and mystery.
Philip Wadler has written a very enjoyable (Like busses: you wait two thousand years for a definition of â€œeffectively calculableâ€, and then three come along at once) paper about propositions as types that is accessible to PLTlettantes.

Recent comments
4 days 3 hours ago
1 week 3 days ago
1 week 3 days ago
2 weeks 23 hours ago
2 weeks 4 days ago
2 weeks 4 days ago
2 weeks 6 days ago
2 weeks 6 days ago
2 weeks 6 days ago
3 weeks 1 day ago